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Abstract The Lehmann-Maehly approach and Bazley’s method of special choice are
matrix eigenvalue problems that allow the calculation of lower bounds to energies
of atomic and molecular systems. We introduce a common derivation of their scalar
versions using the overlap of a trial function with the unknown ground-state wave
function. In the scalar setting, the Lehmann-Maehly approach reduces to the Temple
formula. The common derivation allows us to easily unite and improve both methods
in several stages within this restricted application. Finally we offer a different union
that allows generalization to arbitrary dimension matrix methods. Calculations on the
helium atom ground state illustrate the improvements and mergers.
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1 Introduction

Two standard methods to calculate lower bounds to the electronic energies of atomic
systems are the Lehmann-Maehly approach [1] and Bazley’s method of special choice
[2,3]. The Temple formula [4] is a popular simplification of the former. These methods
appear dissimilar in many aspects and we compare them using the non-relativistic fixed
nucleus atomic system. The Hamiltonian for such a system can be written as H =
h + R where h is the sum of the kinetic energy and nuclear attraction potential energy
operators while R is the sum of the positive definite electron repulsion operators, 1/rij
where rij is the distance between the i and jth electrons. The eigenvalue problem is
H�n = En �n. Both methods are quite general and are formulated as variational-like
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matrix methods using certain finite-dimensional basis sets to provide lower bounds to
several of the lowest eigenvalues En of H .

The three main differences are:

(A) Bazley’s method requires an exactly soluble base problem, such as h ψn = en ψn
where h ≤ H . In its most basic form one must approximate the eigenfunctions of
H using linear combinations of the incomplete base problem eigenfunctions ψn.
The Lehmann-Maehly method allows any trial function φ. This difference makes
the latter approach superior if one has great flexibility in φ so that it can be made
to approach the true eigenfunction �n of H .

(B) The Lehmann-Maehly method requires the expectation value of the square Hamil-
tonian which, for our example, introduces the operators h2, h R, Rh and R2. The
calculation of the expectation values for such operators is difficult and has been
the subject of much work. (See [5,6] for the calculation of a lower bound to the
ground-state energy of the lithium atom and for references to the necessary inte-
grals.) Bazley’s method does not use the square Hamiltonian; rather, it replaces
the expectation value of each 1/rij appearing in R (added to h in variational cal-
culations) with expectation values of ri j . In this work we study the helium atom
as an example which has only a single inter-electron distance r12 = R−1.

(C) The Lehmann-Maehly approach requires knowledge of a lower bound to a certain
excited state Em. This allows calculation of lower bounds to energies En < Em.
Bazley’s method requires exact knowledge of the base problem eigenvalues en.
While a lower bound to one of Em (for Lehmann-Maehly) and exact knowledge of
several en (for Bazley) seem to be very different requirements, the only ab initio
lower bound to Em is em. Thus this third difference is somewhat superficial as
the base problem is vital to both methods, though certainly used more in Bazley’s
where the eigenfunctions play a vital role.

Our goal is to merge the Bazley and Lehmann-Maehly lower bound methods. For
simplicity we limit our analysis to the ground-state energy. We further limit the initial
work to the scalar situation where a single trial function is studied, because it is only in
this simple case that we have found a common derivation that allows a straightforward
comparison and merger. Toward the end, however, we introduce a matrix method that
combines aspects of both methods and allows use of arbitrarily large basis sets for
lower bound calculations.

2 Bazley and Temple bounds

Bazley’s lower bound to E1 is traditionally derived by introducing the operator HB =
h + B where B = [R−1]−1. [R−1] is the matrix representation of R−1 on a finite-
dimensional subspace S and [R−1]−1 is the inverse of [R−1] on the subspace S which is
then extended with null effect to the domain of the rest of Hilbert space. When subspace
S is merely the span of ψ1 then the eigenfunctions of HB are the same as those of h so
that HB ψn = en ψn for n > 1 and HB ψ1 = εψ1 where ε = e1 + 〈ψ1

∣
∣R−1

∣
∣ψ1〉−1.

If ε < e2 then ε is the lowest eigenvalue of HB and provides a lower bound to E1 in
inequality (1). Otherwise E1 ≥ e2.
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E1 ≥ ε = e1 + 〈ψ1| R−1 |ψ1〉−1 (1)

The Temple formula is the simplest version of the Lehmann-Maehly method. Given
a lower bound, E2,low, to the first excited-state energy, E2, one can compute a lower
bound to the ground-state energy E1 using inequality (2) where φ is a normalized trial
function approximating the ground-state wave function. The Temple bound is valid
only if 〈φ |H | φ〉 < E2,low. Convergence to E1 is guaranteed as φ approaches �1
though it is apparent from many applications that the lower bound converges more
slowly than the variational upper bound [5].

E1 ≥ E2,low 〈φ| H |φ〉 − 〈φ| H2 |φ〉
E2,low − 〈φ| H |φ〉 (2)

Where does the lower bound to E2 in the Temple formula come from? The only
ab initio source is the base problem of the repulsionless atom. Because the electron
repulsion operator is positive definite, e2 ≤ E2. Thus e2 is vital to both the Temple
formula (requires 〈φ |H | φ〉 < e2 = E2,low) and the Bazley bound (requires ε < e2).

3 Common derivation: Temple bound

A common derivation for the Temple and Bazley bounds is achieved by focusing on the
square magnitude overlap s2 between a normalized trial function φ and the unknown
normalized ground-state wave function �1 of H . Trivial upper and lower bounds to
s2 are 1 and 0, respectively. A non-trivial lower bound to s2 is provided by the Eckart
bound (3) and an upper bound is given as inequality (4) [7,8]. A lower bound to E2
may be used in place of the exact value for the Eckart bound.

s2 ≡ |〈�1|φ〉|2 ≥ E2 − 〈φ| H |φ〉
E2 − E1

(3)

s2 ≤ 〈φ| H2 |φ〉 − 〈φ| H |φ〉2

〈φ| (H − E1)2 |φ〉 (4)

One derivation of the Temple formula begins by combining inequalities (3) and (4) to
yield inequality (5) where a lower bound has been used for E2. An inequality, quadratic
in E1, results and as long as 〈φ |H | φ〉 < E2,low the two roots are the Temple lower
bound given in inequality (2) and the variational upper bound 〈φ |H | φ〉 ≥ E1.

〈φ| H2 |φ〉 − 〈φ| H |φ〉2

〈φ| (H − E1)2 |φ〉 ≥ E2,low − 〈φ| H |φ〉
E2,low − E1

(5)

4 Common derivation: Bazley bound

If there is knowledge of a soluble base problem, and the trial function is restricted to
be an eigenfunction of the base problem, φ = ψ1, then the Eckart bound can be recast
as inequality (6) where we swap the roles of the base and full problems.
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s̄2 ≡ |〈�1|ψ1〉|2 ≥ e2 − 〈�1| h |�1〉
e2 − e1

= e2 − 〈�1| H − R |�1〉
e2 − e1

= e2 − E1 + 〈�1| R |�1〉
e2 − e1

(6)

The Cauchy-Schwarz inequality (7) allows us to bound the positive quantity
〈�1 |R|�1〉 from below to yield inequality (8) as long as R > 0 so that R1/2 exists.

s̄2 = |〈�1|ψ1〉|2 =
∣
∣
∣

〈

R−1/2�1|R1/2ψ1

〉∣
∣
∣

2 ≤ 〈�1| R |�1〉 〈ψ1| R−1 |ψ1〉 (7)

s̄2 ≥ e2 − E1 + s̄2 〈ψ1| R−1 |ψ1〉−1

e2 − e1
(8)

We then solve for s̄2 and use the trivial upper bound of one to obtain inequality (9)
which easily yields the Bazley bound (1) as long as e2 > e1 + 〈ψ1

∣
∣R−1

∣
∣ψ1〉−1.

1 ≥ s̄2 ≥ e2 − E1

e2 − e1 − 〈ψ1| R−1 |ψ1〉−1 (9)

5 Comparison of the Temple and Bazley bounds

We now consider the helium atom which is the simplest chemical system that is not
exactly soluble in its electronic structure. In the limit of infinite nuclear mass (at the
origin) and using atomic units, the Hamiltonian H is given by Eq. (10) where r12 is
the distance between the two electrons.

H = h + R

h = −
(

1

2
∇2

1 + 2

r1

)

−
(

1

2
∇2

2 + 2

r2

)

R = 1

r12
(10)

The discrete eigenvalues of h are en = −2(1 + 1/n2) and approach the continuum
[−2,∞) from below. These serve as lower bounds to the eigenvalues En of H due to
the positive nature of the electron repulsion operator R.

Using a trial function of the form φ = a3 π−1 exp[−a(r1 + r2)] where a is an
adjustable parameter and r is the electron radial coordinate, the best upper bound
to the ground-state energy is −2.84766 (with a = 27/16). The true energy is about
−2.90372. Using the same adjustable form for the trial function in the Temple method
gives a best lower bound of −5.29345 (with a = 1.77158). The Temple lower bounds
are quite poor with this restricted trial function. In fact, this best lower bound is worse
than the trivial lower bound provided by the base problem eigenvalue e1 = −4. More
flexibility in the trial function is needed to improve the Temple lower bound. Note that
the trial function that gives the best upper bound does not yield the best lower bound
from the Temple formula.
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We now consider the Bazley bound. Because we are forced to reference the base
problem we restrict the trial function to ψ1 which corresponds to φ = a3 π−1 exp[-
a(r1 + r2)] with a = 2. This means the Bazley bound cannot be optimized. The
result from inequality (1) is E1 ≥ −3.08571. This single value is far better than any
of the lower bounds calculated using the Temple method. Despite the fact that the
Temple method will outperform the Bazley lower bound as φ → �1, it seems that the
Bazley bound can be very advantageous if the trial function is restricted as it has in
this example.

6 Special-case Temple formula

The comparison of the Temple and Bazley bounds in the previous section may not be
the best. In the special case that φ = ψ1, we have two choices for the lower bound to s2

(now equal to s̄2) in the derivation of the Temple formula. Rather than use inequality
(3), we can use inequality (6) and set 〈�1 |R|�1〉 ≥ 0. Coupled with the standard
upper bound (4) to s2 we obtain inequality (11) instead of inequality (5).

〈ψ1| H2 |ψ1〉 − 〈ψ1| H |ψ1〉2

〈ψ1| (H − E1)2 |ψ1〉 ≥ s̄2 ≥ e2 − E1

e2 − e1
(11)

With this change we have lost the flexibility normally inherent in the Temple method,
but we achieve a significant increase in the lower bound which rises to E1 ≥ −3.49670
(there are also two complex-valued solutions). This lower bound is still poorer than
the Bazley bound, but at least it surpasses the trivial lower bound e1 = −4.

7 Temple-Bazley bound

Instead of slightly altering the Temple formula as in the last section, we can actually
merge the Temple and Bazley lower bound methods. The procedure is essentially
the same as the alteration of the Temple formula that was just performed, but we
don’t dismiss 〈�1 |R|�1〉. Again we combine upper and lower bounds to s̄2: this time
inequalities (4) and (8), respectively, to yield inequality (12).

〈ψ1| H2 |ψ1〉 − 〈ψ1| H |ψ1〉2

〈ψ1| (H − E1)2 |ψ1〉 ≥ s̄2 ≥ e2 − E1

e2 − e1 − 〈ψ1| R−1 |ψ1〉−1 (12)

This inequality can be rearranged to a cubic inequality for E1. For the helium atom
with φ = ψ1 the solutions of this inequality give a lower bound of E1 ≥ −3.04336
and two complex-valued solutions.

From one point of view, by incorporating a non-trivial upper bound to s̄2 we have
added Temple-character to the Bazley bound and gained improvement of the lower
bound from −3.08571. From another point of view, by incorporating Bazley’s bound
to 〈�1 |R|�1〉 we have added Bazley-character to the special-case Temple formula
of Sect. 6, raising the lower bound from −3.49670. Regardless of how the merger is
seen, the two methods have been combined and improved.

123



J Math Chem (2013) 51:2062–2073 2067

The improvement over the Bazley bound is not great, only about +0.04 units, but
the new lower bound already exceeds that provided by standard Bazley lower bound
calculations when the subspace S is expanded from one-dimension to the span of many
base problem eigenfunctions. This limit is −3.05992 [10] so that the improvement we
have seen is rather remarkable.

8 An upper bound from Bazley

Note: In this section expectation values are assumed to use the base problem ground-
state eigenfunction ψ1unless otherwise noted, so〈A〉 = 〈ψ1 |A| ψ1〉where A is some
operator.

Continuing from the introduction, there is a fourth difference between the Temple
and Bazley bounds. With the derivation in Sect. 3, the Temple method naturally gives
two roots for E1, the lower bound of inequality (2) and the variational upper bound
〈φ |H | φ〉 ≥ E1. Bazley’s method provides only a lower bound. To get more informa-
tion from Bazley’s approach, before merging with the Temple method, we need to get
an improved bound to 〈�1 |R|�1〉. Rather than use the Cauchy-Schwarz inequality
we construct a Gram matrix from the vector {R1/2�1, R−1/2 ψ1, R−1/2 H ψ1}. This
yields the matrix G in Eq. (13).

G =
⎡

⎣

〈�1| R |�1〉 〈�1|ψ1〉 E1 〈�1|ψ1〉
〈�1|ψ1〉∗ 〈ψ1| R−1 |ψ1〉 〈ψ1| R−1 H |ψ1〉
E1 〈�1|ψ1〉∗ 〈ψ1| H R−1 |ψ1〉 〈ψ1| H R−1 H |ψ1〉

⎤

⎦ (13)

A Gram matrix has the property that its determinant is non-negative so we solve for
〈�1 |R|�1〉 using Det[G] ≥ 0. The result is inequality (14).

〈�1| R |�1〉 ≥ s̄2
(〈

H R−1 H
〉 + E2

1

〈

R−1
〉 − 〈

R−1 H
〉

E1 − 〈

H R−1
〉

E1
)

〈

R−1
〉 〈

H R−1 H
〉 − 〈

R−1 H
〉 〈

H R−1
〉 ≡ s̄2γ

(14)

Note that the Cauchy-Schwarz inequality (7) results from the determinant of the upper-
left 2 × 2 submatrix of G. By using a larger matrix we are guaranteed a bound to
〈�1 |R|�1〉 that is not worse. Next we use inequality (14) in inequality (6) to obtain
inequality (15).

s̄2 ≥ e2 − E1

e2 − e1 − γ
(15)

When we introduce the trivial upper bound s̄2 ≤ 1 we seem to obtain an improved
Bazley bound (16) provided that e2 > e1 + γ . This “bound” is misleading because γ
is actually dependent on E1.

E1 ≥ e1 + γ (16)
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The expectation values that appear in matrix G and γ are not as difficult as one would
assume given that the trial function is an eigenfunction of the base problem. These
new expectation values are shown in Eqs. (17), (18) and reduce into combinations of
e1, 〈R−1〉 and 〈R〉. The former is already in use in the Bazley lower bound while the
latter is used in the variational upper bound. Thus no new information is required.

〈

H R−1 H
〉

= 〈ψ1| (h + R)R−1(h + R) |ψ1〉 = e2
1

〈

R−1
〉

+ 2e1 + 〈R〉 (17)
〈

H R−1
〉

= 〈ψ1| (h + R)R−1 |ψ1〉 = e1

〈

R−1
〉

+ 1

= 〈ψ1| R−1(h + R) |ψ1〉 =
〈

R−1 H
〉

(18)

Substituting Eqs. (17), (18) into γ for inequality (16) yields inequality (19) which can
be rewritten as a quadratic inequality for E1. Its two roots provide an upper and lower
bound to E1.

E1 ≥ e1 + e2
1

〈

R−1
〉 + 2e1 + 〈R〉 + E2

1

〈

R−1
〉 − 2e1 〈R〉 E1 − 2E1

〈

R−1
〉 (

e2
1

〈

R−1
〉 + 2e1 + 〈R〉 + E2

1

〈

R−1
〉) − (e1 〈R〉 + 1)2

(19)

The upper bound is the variational estimate 〈H〉 ≥ E1 and the lower bound is the
standard Bazley bound E1 ≥ e1 + 〈R−1〉−1. Thus there is no improvement to the
lower bound, only the appearance of the variational upper bound has been introduced.

Actual improvement to the lower bound – and perhaps also the upper bound – could
in principle be achieved by adding components such as R−1/2 Hn ψ1 with n > 1 to
the vector used to make G. Unfortunately this would create very difficult, or even
divergent, expectation values within G.

9 Final improvement

Finally we combine the improved lower bound to s̄2, inequality (15), with inequality
(4) rather than unity as the upper bound to s̄2. This generates inequality (20) which
can be rearranged as a cubic inequality.

e2 − E1

e2 − e1 − γ
≤ s̄2 ≤ 〈ψ1| H2 |ψ1〉 − 〈ψ1| H |ψ1〉2

〈ψ1| (H − E1)2 |ψ1〉 (20)

The variational upper bound 〈ψ1 |H |ψ1〉 is generated along with a slightly improved
lower bound of −3.03848 and a useless positive root close to 1.

10 Summary

What we have done so far is to merely combine upper and lower bounds to s2 (or
s̄2) to achieve bounds to the ground-state energy. The variations can be summarized
below in inequality (21).
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{

BL ≡1, TL ≡
〈

H2
〉 − 〈H〉2

〈

(H − E1)2
〉

}

≥s2 ≥
{

BR ≡ e2 − E1 + 〈R〉
e2 − e1

, TR ≡ E2 − 〈H〉
E2 − E1

}

(21)

In Sect. 3 we derived the Temple lower bound and variational upper bound using
TL ≥ TR while in Sect. 4 the Bazley lower bound came from BL ≥ BR with 〈R〉 ≥
s̄2〈R−1〉−1. In Sect. 6 we restricted the form of the trial function in the Temple method
to allow use of TL ≥ BR with 〈R〉 = 0. Next, in Sect. 7, we combined the Bazley and
Temple methods using TL ≥ BR again but this time with 〈R〉 ≥ s̄2〈R−1〉−1 according
to Bazley’s method. A complementary upper bound was obtained in Sect. 8 from by
generalizing the basic Bazley method from BL ≥ BR using an even better lower bound
to 〈R〉. Finally the best result merger was obtained in Sect. (9) using TL ≥ BR with
the improved bound to 〈R〉.

One combination was neglected: BL ≥ TR returns only the variational upper bound
〈H〉 ≥ E1.

11 Removing the restriction of φ = ψ1

Note: In this section expectation values are assumed to use the general φ unless
otherwise noted, so〈A〉 = 〈φ |A| φ〉where A is some operator.

All of our results beyond the simple application of the Temple formula have hinged
on the restriction φ = ψ1. We now introduce a simple strategy to add flexibility to the
trial function. Like Bazley, we introduce an intermediate operator (call it HI rather than
HB) with eigenvalues εn such that h ≤ HI ≤ H . Ordinarily this intermediate operator
would be designed using a base problem as a template so that its entire spectrum can
be determined exactly. Instead we proceed by using the Temple method to find a lower
bound ε1,low to the ground-state energy ε1 of HI which will in turn be a lower bound to
E1 of H . By releasing the restriction that we find the eigenvalue ε1 of HI exactly, we
can remove the restriction that HI must related in a special way to a sub-eigenspace
of h.

We define HI in Eq. (22) where [R−1]−1 takes the same meaning as before except
that a general normalized trial function φ is used in place of base problem eigenfunction
ψ1 in forming the one-dimensional subspace S. HI thus depends on φ and we indicate
this by HI(φ).

H ≥ HI (φ) ≡ h + [R−1]−1 (22)

The advantage over the Bazley bound of using HI in place of H is the flexibility
provided by φ. The advantage over the Temple bound of using HI in place of H is
that the expectation values needed may be simpler. The expectation value 〈H2〉 breaks
down to the integrals 〈h2〉, 〈h R〉 = 〈Rh〉, and 〈R2〉. With HI replacing H , the inte-

grals needed in
〈

H2
I

〉

are 〈h2〉,
〈

h
[

R−1
]−1

〉

=
〈[

R−1
]−1

h
〉

, and
〈[

R−1
]−1 [

R−1
]−1

〉

.

Because [R−1]−1 is a matrix restricted to the span of φ, the last two integrals simplify

to 〈h〉
〈[

R−1
]−1

〉

and
〈[

R−1
]−1

〉2
, respectively. Thus by using HI in place of H we
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Fig. 1 The upper and lower bounds to energy ε1 of the variable intermediate Hamiltonian HI(φ) are plotted
against the variable parameter a in the function φ = a3 π−1 exp[−a(r1 + r2)]

replace the calculation of 〈R〉, 〈h R〉, and 〈R2〉 with just
〈[

R−1
]−1

〉

. Both methods still

require 〈h2〉.
Figure (1) shows the variational upper bound and Temple lower bound for the

ground-state eigenvalue of HI(φ) as the trial function φ = a3 π−1 exp[−a(r1 + r2)]
is varied by its exponential parameter a. The best lower bound of El ≥ −3.08172
at a = 2.01717 is just slightly better than the traditional Bazley bound. First note
that each choice of a defines a new intermediate Hamiltonian so that there is no
contradiction when a smaller error bar at a′ is not contained within a larger error bar at
a′′. Also note that for a = 2 the upper and lower bound to ε1 coincide; for this choice
of a, HI(φa=2) = HB so that φa=2 is the exact ground-state eigenfunction.

Capturing R on only a one-dimensional subspace does not allow for HI(φ) to
be close to H and thus even though ε1,low is very close, or even equal, to ε1, the
calculation is not successful because ε1 is far from E1. This is revealed in Fig. (1)
where the variational upper bounds to HI(φ) are well below the ground state energy
E1 = −2.90372 of H .

12 Convergent union

In Sect. 11 we merged the Bazley and Temple lower bound methods in such a way
that a variable trial function could be used in place of a base problem eigenfunction.
However, as long as HI(φ) incorporates the perturbation R on only a one-dimensional
subspace it can never approach H and so the lower bounds to the ground-state of
HI(φ) can never approach E1 of H . In this section we generalize HI(φ) so that it can
approach H rather than mimicking H on only a one-dimensional subspace. To do this
we first review the general approach of Bazley’s method.

To generate the intermediate Hamiltonian HB = h + [R−1]−1, Bazley chose a
subspace S that is the span of N eigenfunctions of h. With this choice of S the operator
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[R−1]−1 is the null extension of an N × N matrix. Outside of S, HB and h share the
same eigenfunctions and eigenvalues. The spectra of HB and h differ only within the
subspace S, but an N × N matrix eigenvalue problem can determine the non-matching
eigenvalues and eigenfunctions. If the base problem eigenfunctions form a complete
set, then as N → ∞ the operator [R−1]−1 → R so that HB → H and convergent
lower bounds to En are obtained. Unfortunately, for atomic and molecular systems,
the infinite number of bound states of h do not form a complete set so that the lower
bounds provided by HB do not converge to En of H .

As in the last section we ignore the base problem eigenfunctions and choose any
subspace S we wish, only this time the subspace is not limited to be one-dimensional.
We redefine the intermediate Hamiltonian with a dependence on a N -dimensional
subspace SN in Eq. (23) indicated by HI(SN).

H ≥ HI (SN ) ≡ h + [R−1]−1 (23)

The operator [R−1]−1 takes the same meaning as in the previous section except that it
is the null extension of an N ×N matrix to all of Hibert space. The simplest subspace to
work with is that generated by the basis set used in variational upper bound calculations.
If this basis set is complete in the limit of N → ∞, then SN approaches the full Hilbert
space and we expect [R−1]−1 to approach R. Thus HI(SN) → H as desired.

It is simplest to mimic the traditional use of the Temple formula: a variationally-
determined trial functionin SN is used to determine the Temple lower bound. How-
ever, in Sect. 5 we saw that such a trial function may not yield the optimal lower
bound. Thus in addition to calculating the Temple lower bound, we turn to the
more general Lehmann-Maehly method and consider the matrix eigenvalue prob-
lem [H − E2,low] χn = �n[(H − E2,low)

2] χn where [A] is the matrix representation
of operator A on SN. If �1 < 0 then E1 ≥ E2,low + �−1

1 . We use E2,low = e2
and naturally substitute HI(SN) for H . This approach is described nicely in Scrinzi’s
application to the hydrogen anion, H− [9].

Both bounds rely on a matrix-eigenvalue problem using a basis set composed of
the functions in Eq. (24) indexed by integer parameters 0 ≤ x = y ≤ xmax and 0 ≤
z ≤ zmax where maximum values determine the size of the basis set. The exponential
parameter a was set at 2 for all calculations.

φx,y,z = e−a(r1+r2)r z
12(r

x
1 r y

2 + r y
1 r x

2 ) (24)

For the Temple formula, a variational calculation was performed using the basis set and
the best variational function was used to calculate the lower bound. For the Lehmann-
Maehly method the eigenvalue problem [H − E2,low] χn = �n[(H − E2,low)

2] χn
was solved.

Table 1 shows the convergence to E1 = −2.903724 of H of the lower bounds
generated by both the Temple formula and the Lehmann-Maehly method applied to
HI(SN). Also shown are the upper bounds for ε1 of HI(SN) which are often below
E1 because HI(SN) is less than H . At first the basis set was constructed using similar
powers for the individual electron radial positions, r1 and r2, and relative position
r12 variables, but it was discovered that superior lower bounds resulted when more
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Table 1 Upper and lower bounds to the ground-state energy of the intermediate Hamiltonian HI(SN) are
determined for various SN. The lower bounds serve as lower bounds to E1 of H for the helium atom

Basis set size = N xmax zmax Upper bound Lehmann-Maehly
lower bound

Temple lower
bound

1 0 0 −3.085 714 286 −3.085 714 286 −3.085 714 286

6 1 1 −2.933 974 727 −3.048 822 223 −3.138 926 160

18 2 2 −2.915 962 194 −2.947 219 805 −2.972 002 182

40 3 3 −2.909 720 909 −2.919 285 244 −2.937 062 170

75 4 4 −2.907 157 764 −2.911 208 056 −2.922 617 097

126 5 5 −2.905 911 301 −2.907 859 204 −2.915 154 402

196 6 6 −2.905 223 737 −2.906 271 725 −2.911 090 828

288 7 7 −2.904 808 897 −2.905 431 024 −2.908 748 257

405 8 8 −2.904 541 332 −2.904 939 765 −2.907 314 266

410 3 40 −2.903 833 448 −2.903 874 639 −2.904 023 260

610 3 60 −2.903 774 211 −2.903 813 435 −2.903 905 563

861 5 40 −2.903 820 073 −2.903 823 319 −2.903 900 783

1010 3 100 −2.903 742 173 −2.903 780 961 −2.903 853 075

1215 4 80 −2.903 752 053 −2.903 754 259 −2.903 766 269

1515 4 100 −2.903 742 309 −2.903 744 421 −2.903 751 243

emphasis was placed on the relative position. The two italicized rows in Table 1
illustrate the different quality of the two basis set strategies.

As the basis set size increased the difference between the upper and lower bounds
to ε1 of HI(SN) generally diminishes. The exception is the first row in table 1 for
which the intermediate problem is exactly soluble so the bounds are identical. Con-
vergence of both bounds to the true energy E1 = −2.903724 of H was slower than
the convergence to to ε1 of HI(SN). Our approach using HI(SN) gave the best lower
bound of −2.90374 with a basis set of 1515 functions; this matches the true energy to
five digits. Identical lower bound calculations using the full form of the Hamiltonian
operator show convergence to six digits with a basis set size of just 400 for both the
Temple and Lehmann-Maehly methods.

13 Conclusion

Through a common derivation of the Bazley and Temple lower bound methods we
have shown that significant improvements in both methods can result by merging
aspects of each. Because the common derivation is valid only in the scalar setting,
capitalizing on the improvements is difficult. In contrast the original Bazley method
easily extends beyond the scalar form and the Temple method becomes the Lehmann-
Maehly approach in matrix form.

Because of this severe limitation we introduced a new way to merge the two meth-
ods. Bazley’s approach was used to define an intermediate problem with an inter-
mediate Hamiltonian operator. However, we did not restrict the construction of the
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intermediate Hamiltonian by requiring that its eigenvalue problem be exactly soluble.
Rather we decided to calculate lower bounds to its eigenvalues by applying the Temple
or Lehmann-Maehly method to the intermediate problem. This gives great variety in
forming the intermediate Hamiltonian and it is simplest to form it in such a way that
mimics a variational upper bound calculation. The results given in Sect. 12 show that
convergence is possible using this final merger of two methods, though convergence
may be slower than in the Temple or Lehmann-Maehly method applied to the full
Hamiltonian operator.

The advantage of our method over the Bazley’s approach is due entirely to the fact
that we have little or no restriction for the basis set. For our example with the Helium
atom, lower bounds from Bazley’s method do not converge to the true energies because
the basis set of the base problem is incomplete, even in the limit of infinite size. The
flexibility of our method allows us to choose a potentially complete basis set and thus
achieve convergence to arbitrary precision. This convergence is slower than for the
Temple or Lehmann-Maehly methods. We pay this price of slow convergence for the
simpler integrals required in our approach as we avoid expectation values of the full
square of the Hamiltonian operator. We conclude that we have a practical lower bound
method that offers some advantages over traditional methods.
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